南京长江第二大桥北汊大桥为预应力混凝土连续箱梁桥,水面线计算一般有以下几种方法

摘要:
以319国道某桥桥位设计为例,分析、探讨了桥位选择、水文计算及桥孔净长的确定时应注意的一些问题。

河道治理工程设计论文

南京长江第二大桥北汊大桥总体设计

关键词: 桥位选择水文计算桥孔净长的确定探讨

时间:2018-01-31 09:03点击: 次来源:好文学作者:编辑评论:- 小 + 大

南京长江第二大桥北汊大桥为预应力混凝土连续箱梁桥,主桥为90+3*165+90的三向预应力变截面连续箱梁,全桥长2172m,本文介绍北汊大桥总体设计。

前言

1水面线计算的分析

南京长江二桥北汊桥总体设计

桥梁是道路跨越河流的主要形式,路线工程中桥梁工程的造价占了较大的比重,有资料表明:根据工程造价历史资料统计分析,一般桥梁工程的造价占整条线路工程的10~30%[澳门十大赌场官方网,1].要降低桥梁工程造价,除了合理选择桥梁结构形式外,就是正确合理进行桥位设计了,而桥位设计又是桥梁设计的主要任务。桥位设计的主要内容包括:桥位选择、水文计算、桥梁孔径和墩台基底埋置深度的确定以及调治构造物的布设等[2].本文仅以319国道某桥为例对桥位选择、水文计算及桥孔净长的确定进行探讨。

1.1水面线计算方法的选择

一、概述

1.新、老桥设计的主要技术参数的比较

水面线计算是河道治理中的基础性工作,对河道治理的工程量及造价有着直接的影响。根据河段的资料,水面线计算一般有以下几种方法:1)恒定非均匀渐变流方程法。恒定非均匀渐变流方程法将治理河段划分为若干个河段,逐段推求。在每一河段内,根据实测的断面资料、相应的洪峰流量、控制断面的“水位—流量”关系及各河段糙率等边界条件进行求解。曼宁公式法将河道看作是体形规则的“天然渠道”,对于沿程较为规则的河段,该方法具有一定的适应性,但是天然河道一般形态多变,因此,该方法的精度有限。3)水面比降法。水面比降法是一种粗略的类比法,通过调查河段近年的洪水位,确定水面的比降,再根据控制断面推算整个河道的水面。该法只适用于资料缺乏的河段。河道治理设计中推荐采用恒定非均匀渐变流方程法,其余的两种方法可作为一种粗略的校核。

南京长江第二大桥位于现南京长江大桥下游11km,是南京长江河段南北过境高速公路上的重要桥梁,目前正顺利进行上部构造悬浇施工,计划于2001年7月1日建成通车。

厦门至成都的319国道我省境内段以逐段按二级公路标准进行改造,其中某桥老桥由上级主管部门鉴定属危桥,为考虑该路段今后改造接线顺畅、施工方便等原因,特另选桥位新建一座桥梁,现将其新、老桥主要技术参数比较如下:主要技术参数319国道某桥新老桥面中心标高
121.17 121.05设计洪水频率1/100
1/50孔径及结构形式4孔16米钢筋砼T梁5孔8米乱石拱桥梁全长 84.42
53.2相互位置新桥位于老桥下游70米以上比较可以看出:新老桥桥面中心标高基本一致,新桥的结构形式有所改进,新桥的桥孔净跨比老桥增大,新桥的桥梁全长比老桥增长。作为新建一座桥梁,由于公路等级的提高,相应桥梁的各种技术参数均应有所提高,但以上的比较结果中,似乎觉得新桥的桥孔净长比老桥增长太多,何况同一跨径的钢筋砼T型梁桥的桥下有效过水面积要比石拱桥改善很多。从施工图预算看,该钢筋砼T型梁桥每延米建筑安装工程的平均单价以达2.4万元,试想如在满足使用的前提下,桥梁全长缩短10米,就是为国家节约投资二十余万元。

1.2计算软件的选择

赌博十大排名官方网站,1.桥位

2.正确合理进行桥位设计

河道水面计算常用的软件主要有:1)美国陆军工程兵团水文工程中心开发的HEC—RAS软件,该软件以能量方程为基础,可以计算一维恒定流和非恒定流河道水面线。2)荷兰代尔夫特水力学所及有关机构联合开发的SOBEK软件,该软件以一维圣维南方程为基础,计算河道水面线。现以云南省彝良县洛泽河角奎镇附近的河道水面线计算为例,对以上两种软件进行对比分析。计算洪水标准为20年一遇,洪峰流量1621.00m3/s,河道为缓流,控制段选择在下游,计算起始断面水深为832.45m,河道糙率综合取值为0.04。SOBEK软件迭代初始水深为0.0m。

南京长江第二大桥北汊大桥桥址所在八卦洲河道属长江下游南京河段,河道近于东西走向,桥址处河段为微弯分汊型,平面型态宽窄相间,北汊河道弯曲,长约21.7km,北汊大桥即位于北汊中段,北起大厂区张营村,南止八卦洲三道湾。桥址处南、北岸均构筑了长江达标防洪堤,堤间距离
1287m,高程约 9.5m,主河槽宽近
1000m,北高南低,河床标高1.51~7.68m,深泓偏南,常水位时最大水深13.15m,北汊河道经多年整治、建堤,河势基本稳定。北汊航道为扬子石化等”五大家族”专用航道,通行3000t船舶。航道宽580~600m,中心位于
k14+750,桥轴线与北汊主流、航道正交,两端接线顺适均衡,总体配合良好。

2.1合理选择桥位

2河道防护形式的选择

2.水文

澳门十大赌场平台,桥位设计首先就要合理选择桥位,桥位应选在符合水文、地形、地物、地貌及工程地质等方面的要求处,对通航河道还应符合通航方面的要求。水文方面桥位应选在河道顺直、稳定、滩地校高、较窄,且河槽能通过大部分计算流量的河段上。从现场观察,新桥桥位的河滩较宽,加上桥轴前进方向河滩靠岸处有一条人工开挖的农田灌溉水渠,经洪水的冲刷,使河滩中有一堆较大沉积物,平常上面长有杂草和灌木,新桥建成后需作必要的河床疏导、整治。总体看来新桥桥位没有老桥桥位理想。

2.1传统的河道防护措施

北汊大桥水文计算分析成果:

正规赌博提现游戏,2.2合理进行水文计算,经济布设桥孔长度

传统河道防护多采用刚性防护措施,主要为浆砌石防洪墙、浆砌石护坡等,结构抗冲刷及破坏的能力强,能够适应较恶劣的自然环境。但传统刚性防护很少考虑工程措施对生态环境的影响,阻断了河道与外界的环境交流。

设计流量22000m3/s

水文计算的目的就是推求符合相应频率的设计洪水水位流量。在此之前还要正确划分所设计的桥位属于何种类型的河段,并在实地在形态断面上合理划分河槽、河滩,合理确定河槽与河滩的洪水糙率系数。现该桥的设计流量与桥孔净长计算如下:

2.2现代河道防护措施

设计水位 9.20m

赌博大平台网址,一、基本情况该桥址中心桩号为319国道K1037+959.6处,系山区河流,其上游约70米处有一座5孔8米的石拱桥,桥面标高121.05米,河槽内为砂砾,经调查历史最高洪水位标高为119.00米,下游洪水位标高为118.83米,推算出桥位处历史最高洪水位标高为118.93米,测得水面比降为1‰。

现代河道防护多采用生态防护措施,主要有植物护坡、格宾石笼、生态袋护坡、生态混凝土等措施。其优点是在满足工程结构安全的基础上,达到了河流与外界环境的协调统一,实现了河道的持续发展。其缺点是生态防护措施的强度不大、抗冲刷能力较差,不适宜流速大的部位。

设计流速 1.59m/s

二、形态断面流量、流速计算河滩、河槽的过水面积W和水面宽度B计算见附表:因水面宽大于平均水深的10倍,所以计算滩、槽断面的流速时水力半径用滩、槽的平均水深代替,湿周用水面宽代替河滩部分:Ht=Wt/Bt=(126.45+75.84)/(87.60+47.60)=202.29/135.2=
1.5mVt=mHt2/3 I1/2
=25×1.502/3×0.0011/2=1.04m/sQt=WtVt=202.29×1.04=210.38m3/s河槽部分:Hc=Wc/Bc=
194.63/54.65=3.56mVc=mHc2/3I1/2=40×3.562/3×0.0011/2=2.95m/sQc=WcVc=194.63×2.95=574.16m3/s全断面总流量Q总=Qt+Qc=210.38+574.16=784.54m3/s全断面平均流速Vo=Q总/W总=
784.54/396.92=1.98m/s取设计流量为:Qs=790m3/s

2.3河道防护形式的选择

一般冲刷 4.36m

三、桥孔净长计算该河段属稳定河段,按河槽宽度公式:Lj=K
nBc进行计算因稳定河床K=0.84
n=0.90则有Lj=0.84×(790/574.16)0.9×54.65=61m经比较确定上部构造采用4孔16米钢筋砼简支梁桥,即实际桥孔净长为64.0米。以上桥孔净长是根据河槽宽度公式计算而来。我们知道河槽是河流宣泄洪水和输送泥沙的主要通道,河槽往往是常年流水,底沙处于运动状态,植物不易生长。而河滩则只是在汛期才有流水,无明显的底沙运动,通常有草类、树木等植物生长。从该桥的水文调查得知,其常年流水的河槽并没有54.65米宽。

河道治理的目的不同,选择的防护形式亦应有所区别。防护形式的选择应“因地制宜”,充分考虑水力条件、天然建筑材料、施工、维护等因素,设计中应充分体现“生态治理、亲近自然”的理念,避免河道治理的“渠道化”,尽量不改变现有河道的走向及岸坡结构,减少二次生态破坏。流速不大的河段,应优先采用生态防护措施,尽量避免防洪堤的新建,如必须新建则应优选生态护坡土堤。流量较大、流速较高的河段,应首选防冲能力较强的防护结构,冲刷较深的河段宜选择刚性防护。

局部冲刷主墩13.70m,过渡墩12.40m

根据《公路桥位勘测设计规范》JTJ062-91[3]的如下各条规范:第7.1.2条对水文计算的基本资料应审核其可靠性、独立性、一致性和系列代表性。

3结语

最大冲刷深度主墩 18.60m,过渡墩 16.76m

第7.1.3条水文计算可根据资料情况及地区特点采用多种方法计算,经分析论证后选用其合理的计算成果。

1)河道治理设计中推荐恒定非均匀渐变流方程法。根据实例计算,HEC—RAS软件计算结果更偏于安全一些,由于HEC—RAS软件运行费用远远低于SOBEK软件,且成果整理也较为简便,因此实际设计推荐采用HEC—RAS软件。2)河道治理应根据不同的治理目的,选择适宜的防护方案,在满足河道防洪安全的前提下,应大力推广和使用生态防护措施,促使人与自然和谐发展。

建议施工水位 7.0m

第8.2.2条影响桥孔净长的因素较多,除进行必要的桥长计算外,尚应结合桥位地形、断面形态河床地质、桥前雍水、冲刷深度、桥头引道填土高度等综合分析确定桥孔净长。

作者:李伟 单位:中国电建集团昆明勘测设计研究院有限公司

3.气象

第8.3.5条山区河段的桥孔布设。开阔河段桥孔布设允许压缩河滩,但不能压缩河槽。桥头河滩路堤应尽量与洪水主流流向正交,否则应增大桥孔。

第二篇

南京属北亚热带向中亚热带过渡气候区,四季分明,冬冷夏热,温差较大,春季风和日丽,夏季炎热,雨量充沛,秋季秋高气爽,冬季天气晴朗,寒冷干燥。

又根据实际情况,在设计水位,河滩、河槽的洪水糙率系数,洪水比降参数都不改变的情况下,只将河槽河滩的划分稍作调整,河滩的范围为K1037+840~K1037+927.76与K1037+
958~K1038+029.85,河槽的范围为
K1037+927.76~K1037+958,河滩、河槽的累计过水面积及宽度计算如下:Wt1=
126.45m2 Bt1=87.60m Wt2=157.01m2 Bt2=71.85m Wc=113.46m2
Bc=30.40m然后计算出洪水流量为Q总=673.99m3/s.计算桥孔净长时取设计流量为Qs=700m3/s.按河槽宽度公式计算得桥孔净长为:Lj=
48.25m按单宽流量公式计算得桥孔净长为:Lj=54.36m通过以上两种方法计算,综合考虑可取桥孔净长为Lj=54m8m/s取设计流量为:Qs=790m3/s

1工程存在的主要问题

桥址处江面以上 28m高,百年一遇 10min平均最大风速 34.4m/s。

三、桥孔净长计算该河段属稳定河段,按河槽宽度公式:Lj=K
nBc进行计算因稳定河床K=0.84 n=0.90则有
Lj=0.84×(790/574.16)0.9×54.65=61m经比较确定上部构造采用4孔16米钢筋砼简支梁桥,即实际桥孔净长为64.0米。以上桥孔净长是根据河槽宽度公式计算而来。我们知道河槽是河流宣泄洪水和输送泥沙的主要通道,河槽往往是常年流水,底沙处于运动状态,植物不易生长。而河滩则只是在汛期才有流水,无明显的底沙运动,通常有草类、树木等植物生长。从该桥的水文调查得知,其常年流水的河槽并没有54.65米宽。

1)河道防洪标准低,水利设施不配套、老化失修严重现有河道整治工程主要是在上世纪六七十年代所建,防洪标准普遍很低,部分工程村各自为政,不能形成整体防洪体系。下游河段基本无防护工程。因资金投入严重不足,大部分防洪设施工程老化失修,行洪能力大大降低;洪水灌溉渠系及建筑物破损残缺,洪水灌溉功能逐渐丧生,洪水资源白白流失。洪水全部下泄,加大下游河道的行洪压力。现河道行洪能力很低,往往是小水小灾、大水大灾。

4.地震、地质

根据《公路桥位勘测设计规范》JTJ062-91[3]的如下各条规范:

2)侵占蚕食行洪河道,弃渣设障现象日趋严重近年来,受经济发展和人口增长影响,土地成为紧缺资源,多年不行洪的河道成为被侵占的对象。马壁峪河铺头段、高渠段、西社段被企业建设生产圈占,缩窄行洪断面,个别段几乎堵死。下游河段多年不过水,大量被平整耕种,有河无槽。李老庄段、铺头段、三界庄段工业弃渣乱堆滥放,形成行洪障碍,部分河段无序开采河道砂石,不进行平整,扰乱河势,阻塞主槽。对所在乡镇和村庄的防洪安全,构成了严重威胁。

经桥址地震危险性分析,桥址使用期50年,超越概率10%,基岩地震水平加速度为0.0825g,场地为Ⅲ类场地土。

第7.1.2条对水文计算的基本资料应审核其可靠性、独立性、一致性和系列代表性。

3)跨河涉河建筑标准低,形成卡口和瓶颈跨河建筑有侯禹高速、侯西铁路、禹门口引黄干渠、108国道和县道管化线,西涧下游直穿县城东区而过。其中高速路、铁路可满足50年一遇洪水通过,其它建筑不同程度地存在过水断面小,水流不顺畅的问题,个别建筑物甚至无排洪设施,形成行洪卡口和瓶颈,加剧了洪灾。

桥址主河槽及两岸漫滩广泛分布第四系覆盖层,其厚度在河槽中约28~38m,岩性以粉细砂为主,零星分布淤泥质亚粘土、亚沙土和薄层亚粘土;两岸漫摊分布连续性较差,厚度5m左右,以亚粘土为主,其次为淤泥质亚粘土、亚砂土和细砂。其下分布约lm厚的含卵砾石及砾砂直接覆盖于下伏基岩之上。桥址区下伏基岩属白垩系上统浦口组综红色泥岩、钙质泥岩及粉砂岩,岩石层理发育,相变及尖灭频繁,由于组成岩石的矿物成分和胶结程序不同。岩体物理力学性质差异较大。

第7.1.3条水文计算可根据资料情况及地区特点采用多种方法计算,经分析论证后选用其合理的计算成果。

2工程规模及布置

二、主要技求指标

第8.2.2条影响桥孔净长的因素较多,除进行必要的桥长计算外,尚应结合桥位地形、断面形态河床地质、桥前雍水、冲刷深度、桥头引道填土高度等综合分析确定桥孔净长。

马壁峪稷山县段一道分水口至入汾口地区涉及稷山县城的25个村庄,人口6.25万人,耕地4300hm2。沿线有许多大型企业,总资产6.6亿元;禹门口提水工程总干渠、京太西光缆、侯禹高速公路、侯西铁路、108国道均在本区从东向西穿过。根据马壁峪河防护对象及《水利水电工程等级划分及防洪标准》第2.1.1规定,本工程等别为Ⅳ等,建筑物级别为4级。根据《防洪标准》,堤防工程乡村段防洪标准为10年一遇,县城段为20年一遇。

按六车道高速公路特大桥设计:

第8.3.5条
山区河段的桥孔布设。开阔河段桥孔布设允许压缩河滩,但不能压缩河槽。桥头河滩路堤应尽量与洪水主流流向正交,否则应增大桥孔。又根据实际情况,

根据河道防洪总体规划,按照“轻重缓急、统筹兼顾、分期实施”的指导思想,马壁峪稷山县段河道治理工程规划范围是从马壁峪河峪口以下至西涧入汾口。本次河道治理总长度为8.93km。

设计行车速度 100km/h

3几点认识

此段河道治理起点为马壁峪峪口以上,位于稷山县与乡宁县交界处范坂旅游公路桥,终点为二道分水口,位于西社镇的铺头村以南600m左右,全长3.15km。该段河道位于山区和洪积扇上部,纵坡较陡、河流顺直、主槽较窄,河床砂卵石粒径较大,河道左右两侧堤防均为浆砌石护堤,多处因淘刷失稳,临村堤防损毁较多,且河道内由于乱挖乱倒垃圾,河道需进行疏浚后才能正常行洪。该段河道堤防工程防洪标准为10年一遇,设计洪峰流量124m3/s,一道分水口为中墩式隔堤,隔堤为浆砌石直墙结构,根据堤防宽度自然分水,右侧分水至稷山,左侧分水至新绛,新绛一侧主要功能为引洪灌溉,所以一道分水口下至二道分水口之间流量无变化;二道分水口位于一道分水口下游1.05km处,左侧为大众涧,右侧为西涧,隔堤为浆砌石直墙,历史上一直采用1∶3比例自然分洪进行引水灌溉。主要工程布置为堤防加固改造、分水口护砌及跨河建筑物。本次设计西涧河分洪流量仍采用1∶3比例,设计大分洪流量为31.0m3/s;大众涧根据堤防宽度采用自然分流,设计流量93.0m3/s。

桥梁宽度 32m

3.1桥位设计的合理与否直接影响桥梁的基本尺寸和布局,亦直接决定桥梁在修建和使用过程中是否达到最合理、最经济。应正确理解、灵活运用《公路桥梁勘测设计规范》。

马壁峪西涧0+000~12+070该段河道长12.07km,位于汾河高阶地,受水流长期冲刷,形成明显河谷,主槽逐渐变宽,纵坡变缓。西涧进入西社村段,河道下切,形成明显的涤沟,该段河道上个别村有断断续续的护村坝和护岸工程,并建有多处灌溉进水退水建筑物和分水闸、节制闸等工程,由于多年未行洪,河道被缩窄挤占,且大部分河段没有设防,跨河桥涵大多不能满足设计洪水,建议沿河村镇尽快拆除重建,避免行洪阻水,造成损失。本次改造河道为0+000~2+800段,该段主要防护范围为乡村,防洪标准采用10年一遇,设计分洪流量为31.0m3/s,主要工程为河道拓宽、新建堤防2.8km,右岸堤防护砌200m,凹岸护砌600m。

设计荷载汽车-超20级,挂车-120

3.2应根据场地条件、河流平面外形和河流的稳定程度等因素合理确定桥梁所处的河段是属于哪一类型的河段。

马壁峪西涧桐下至入汾口段该段河道长3.98km,位于汾河平原,属典型蜿蜒堆积型河道,本次河道治理为县城段13+070~16+050,长2.98km,由于该段河道主要防护对象为稷山县城,所以防洪标准按20年一遇设计。洪峰流量为115m3/s。根据稷山县城市规划,该段已列入城市防洪规划,规划断面采用半挖半填土质断面。主要工程为新建堤防5.96km;修建跨河建筑物及入汾涵闸。

设计风速 30.4m/s

3.3桥位应选择在河道顺直、稳定、滩地较高、较窄、河岸稳固、工程地质较好的河段上。

3工程设计

地震基本烈度Ⅶ度

3.4河床的滩、槽划分准确与否,对桥孔长度计算影响极大,应根据河段平面形态、植被分布情况在桥位现场认真调查研究合理划分河床滩、槽。

3.1河道纵、横断面设计

船舶撞击荷载顺水流方向20000kN,横水流方向10000kN

3.5为合理划分河床滩、槽及真实地计算洪水流量,应在河床纵断面测量时根据河床断面形状变化点和一定距离中加设测点桩,并且断面测量的纵、横向偏差应符合规定要求。

治理段河道现状因人为开挖及堆放垃圾呈不规则断面,本次设计结合河道自然走势与河槽断面,计算断面按天然河道宽度,新建堤防按梯形断面计算。峪口段河槽宽度25~80m,局部河槽较窄,其中750m长需要拓宽;西涧段0+000~2+800段河槽宽度15~20m,沿范家庄村河段行洪段面平均宽仅4m左右,河道需拓宽,拓宽段长950m;西涧段13+070~16+050段为新建梯形断面土堤,河槽底宽30m、边坡1∶2.5。纵断基本维持原河道纵坡不变。

通航净空净宽≥125m,净高18m

3.6河滩、河槽的洪水糙率系数、水面比降等均应按规范规定合理确定。3.7对桥位设计流量和桥孔净长的推算结果应根据多种因素综合分析论证确定。

河道堤防布置主要根据洪水主流方向,宜弯则弯,宜直则直,沿河道两岸布置规划两道堤防,河道转弯半径不宜小于5倍水面宽度。峪口段:河道总长3.15km,堤防改造总长4.76km,格宾石笼护岸150m,河道转弯处采用格宾石笼护底,共4处,总长420m。由于局部河道行洪断面较窄,需要按设计断面拓宽。峪口段共三处,总长750m。西涧:二道分水口以下西涧0+000~2+800段左岸堤防护砌2.8km,右岸堤防护砌200m,河道转弯处采用格宾石笼护底,共6处,总长600m;西涧13+070~16+050段开挖河槽,采用半挖半填梯形断面,两侧新建土堤5.96km;入汾后开挖土渠至汾河主槽388m。西涧段沿范家庄村河段行洪段面平均宽仅4m左右,拓宽段共三处,总长950m。

设计最高通航水位 8.10m

参考文献:

3.2.2堤防高度确定

设计最低通航水位 -0.4lm

[1]、交通部公路工程定额站编公路工程造价工程师培训教材《公路工程技术》1998.

设计洪水频率 1/300

[2]、熊广忠主编《桥涵水力水文计算》北京人民交通出版社出版1983.

桥梁最大纵坡不大于3%

[3]、JTJ062-91《公路桥位勘测设计规范》北京人民交通出版社出版1998.11.

三、桥梁总体设计

[4]、张学龄主编《桥涵水文》北京人民交通出版社出版1990.在设计水位,河滩、河槽的洪水糙率系数,洪水比降参数都不改变的情况下,只将河槽河滩的划分稍作调整,河滩的范围为K1037+840~K1037+927.76与K1037+
958~K1038+029.85,河槽的范围为K1037+927.76~K1037+958,河滩、河槽的累计过水面积及宽度计算如下:Wt1=
126.45m2 Bt1=87.60m Wt2=157.01m2 Bt2=71.85m Wc=113.46m2
Bc=30.40m然后计算出洪水流量为Q总=673.99m3/s.计算桥孔净长时取设计流量为Qs=700m3/s.按河槽宽度公式计算得桥孔净长为:Lj=
48.25m按单宽流量公式计算得桥孔净长为:Lj=54.36m通过以上两种方法计算,综合考虑可取桥孔净长为Lj=54

1.总体设计原则

综合考虑桥址地形、地物、水文、地质、通航,以及技术经济、美学和结构受力要求,尽量做到技术先进、经济合理、造型美观、施工方便可行,使用安全耐久,以期达到总体安全、适用、经济合理之目的。具体操作中,对于主桥侧重于先进性、引桥则侧重于经济往来进行桥型方案选择及桥孔布设。

2.桥型方案及总体布置

桥跨总体布置中,重点考虑下述因素:

•两岸均已建成长江南京河段达标大堤,为堤防安全,应避开大堤设墩,并留以足够的安全距离,确保施工及运营期大堤安全。

•考虑北汊航道航迹及其中心位置,尽可能使主桥中心与航道中心一致,并使主桥通航桥孔覆盖航迹范围,主桥不少于两个通航孔,从利于通航和美学考虑,布置了三孔通航孔。

•尽量减少深水基础,以缩短工期、节省投资。

•主桥边中跨比大小,既考虑结构合理受力,也考虑方便施工。考虑到一座大跨经PC连续梁或连续刚构在边路近边支点梁段裂缝的经验教训,本桥主桥设计中,适当减小了边孔跨径,降低边、中跨径比,以期尽量减小边跨主拉应力,避免裂缝产生,并有利于施工。

•桥址下伏基岩埋深不大,岩面平整。

•漫滩中引桥适当采用稍大的跨径,这一跨径应能跨越两岸江堤,堤内引桥则以经济跨径布设。

•按照软土路基允许最大填土高度要求,桥头路堤填土高控制在5m以内。

综合考虑上述诸因素,在初步设计和技术设计阶段,主桥拟定了90+3*165+90m和105+3*180+105m两种跨径组合的预应力变截面连续箱梁和连续刚构方案进行了同深度的技术经济比较。结果认为,主孔165m的布孔方案已基本覆盖了航迹范围,满足通航及防洪要求,且大跨径预应力混凝土连续箱梁结构整体性能良好,刚度大,变形小,行车舒适,断面抗扭刚度大,抗震性能好,主墩刚度相对较大,抵抗航舶撞击能力较强,全桥型线简洁大方,施工难度不大,养护维修方便,造价适度,经专家审查和交通部批准,同意北汊主桥采用主跨165m的五跨预应力混凝土连续箱梁方案。

最终北汊大桥桥跨总体布设方案为:

主桥 9()+3 X 165m+90in=675m等截面预应力混凝土连续箱梁桥

北引桥 35m+16*30m+5*50m=733.5m等截面预应力混凝土连续箱梁桥

南引桥 5*50m+17*30m+3.5m=763.5m等截面预应力混凝土连续箱梁桥

全桥长 2172m。

主桥桥面标高,按两次边孔在最高通航水位以上留有通航净高18m考虑,桥面以主桥中心对称设置2.957%的双向纵坡,并没半径16000m的凸型竖曲线,为改善大桥景观,展示大桥结构造型美感,在大桥南、北引桥分别设置了半径为8000m和4136m的平曲线。

3.主桥

主梁截面形式及其构造

大跨度PC连续梁桥上部构造结构自量占设计荷载的比重,随着跨度的增加而增大,在保证结构刚度的前提下,尽可能地减轻上部结构自重、并获得较大的截面有效承载力,是其断面设计首先考虑的问题。为此,桥梁结构横断面布置,将六车道桥梁布置成上、下行分离的大悬臂三向预应力单箱单室断面,用顶板的横向预应力和腹板内竖向预应力筋来解决顶板受力及主梁腹板抗剪问题,采用大吨位预应力体系及其合理布设.避免因布束增加顶、底板面积和齿板构造。这样的三向预应力单箱单室断面,具有抗扭刚度大,截面效率高、动力性能良好等优点,并能有效地减轻上部构造自重和减小下部结构构造尺寸,节省材料。

主桥箱梁架高由跟部的 8.8m,梁底按二次抛物线变化至跨中的
3.0m,分别为跨径的1/18.75和1/55,单幅箱梁顶宽15.42m,设置向外的2%横坡,顶板两侧翼板悬臂长3.96m,顶板厚0.28m,底板宽7.5m,厚1.1~0.3m,因板厚0.9~0.4m。箱梁在墩顶0号块设厚度为
0.8m的两道横隔板,其位置与主墩侧壁对应,以便悬臂浇筑时,设置墩梁临时固结构造,在边路端部箱梁设2.0m厚横隔板。PC箱梁采用挂篮悬臂浇筑施工,梁段划分为8m+5*2.5m+5*3.0m+5*3.5m+8*4.0m,中跨、次边跨合龙段长3.0m,边跨合龙段长2.0m,边跨支架现浇段长6.72m,梁段最大重量156t。

预压力体系

箱梁按三向预应力设计,纵向预应力采用 27φj15.24,25φj15.24, 19φj15.24和
12φj15.24的 ASTM
A416-92270级钢绞线,OVM锚。仅在箱梁跟部几个梁段布设腹板下弯束,余全为顶板束及底板束。顶、底板来均采用平湾、竖弯结合的空间束,集中锚固于腹板顶部承托中尽量靠近腹板的齿板上,以减小局部应力和利于锚固集中力迅速传至全断面。箱梁顶板横向预应力采用
4φj15.24钢绞线,BM-4型扁锚,以75的间距布置,单端交替张拉锚固。箱梁腹板内以50m的间距单肢和双肢设置了φL32精轧螺纹粗钢筋的竖向预压力筋、YGM锚。

根据工程总体工期安排,要求主、引桥同步施工,为使主桥纵向预应力张拉作业不受引桥施工干扰,主桥边孔正弯矩束采用梁端固定锚、梁内张拉锚固的方式设置。

主桥下部构造

采用钢筋混凝土空心薄壁墩,高桩承台,群桩基础。墩身为5m*7.5m矩形薄壁截面,壁厚
1.2m,为抵抗航舶撞击的局部应力,采用
50号混凝土,并适当加大墩身钢筋保护层厚度,在其中设置了钢筋网。主墩承台厚
3.5m,顶面标高-0.5m,9φ2.5m钻孔灌注嵌岩桩基础。

关于应力控制

对大跨度PC梁式桥,考虑其施工误差,混凝土性能的不均匀性以及计算理论与这类三向预应力结构工作性状的差异等,并结合国内已建同类桥架运营实际工作状况及出现的问题,设计中对主桥上都构造各项应力指标进行了控制,使之留有一定富余和安全储备,以增加结构安全度和耐久性。计算结果,主桥PC箱梁施工阶段最大正应力为
17.4MPa,最小正应力为-0.46MPa,最大主拉应力为-0.8MPa;运营阶段最大正应力为
16.7MPa,最小正应力
2.4MPa,最大主抗应力为-0.8MPaMPa。并要求对竖向预应力采取复拉工艺,计算中并仅计其竖向预应力的部分作用,将其余部分竖向预应力作为安全储备考虑。

4.引桥

两岸引桥均采用逐孔浇筑的等截面PC连续箱梁,跨两岸大堤及堤外桥孔按50m布孔,堤内按30m布孔,钻孔灌基础。